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ABSTRACT: A procedure based on Molecular Dynamics (MD) simulations employing soft potentials derived from self-
consistent field (SCF) theory (named MD-SCF) able to generate well-relaxed all-atom structures of polymer melts is proposed.
All-atom structures having structural correlations indistinguishable from ones obtained by long MD relaxations have been
obtained for poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) melts. The proposed procedure leads to
computational costs mainly related on system size rather than to the chain length. Several advantages of the proposed procedure
over current coarse-graining/reverse mapping strategies are apparent. No parametrization is needed to generate relaxed
structures of different polymers at different scales or resolutions. There is no need for special algorithms or back-mapping
schemes to change the resolution of the models. This characteristic makes the procedure general and its extension to other
polymer architectures straightforward. A similar procedure can be easily extended to the generation of all-atom structures of
block copolymer melts and polymer nanocomposites.

1. INTRODUCTION

The behavior of synthetic polymers has been thoroughly
investigated based on simple and idealized models within the
framework of the seminal works of Flory1,2 and de Gennes.3

According to the picture resulting from these studies, all
polymers with a specified branching structure, although they
have different chemistries, follow universal scaling laws when
they are in a melt or dissolved in a solvent of the same quality,
and these scaling features allow us to understand polymers’
behavior qualitatively. In conjunction with these theories,
specific models of synthetic polymers have remained very useful
in predicting and understanding the relationship between
chemical structures and the key physical and chemical
properties of polymeric materials. For this reason, the
development of predictive computational schemes able to
model the details of atomistic structures and evaluate their
relationship with final properties has been a subject of intensive
study.4−7 To this end, due to the increasing development of
computer performance, simulation techniques have become
important tools of research in polymer science. In particular,

molecular dynamics techniques have been employed to study
different aspects of polymeric materials.8−15

Macromolecules, even single chains thereof, exhibit much
more complex behavior than simple molecular liquids do, and
the main difficulties associated with simulating polymers are
related to the intrinsically multiscale nature of macromolecules.
In fact, macromolecules’ structure gives rise to a wide range of
coupled length and time scales. Scales of several orders of
magnitude are strongly connected for a single chain, in which
the typical length scales range from the scale of a single
chemical bond (order of 1 Å) to that of the persistence length
(∼1 nm) and finally to that of the radius of gyration of the
chain (∼10 nm). The range becomes even broader if packing of
different chains is considered. In particular, from the local
packing of chains in the bulk (on the order of atomic radii) to
the smallest phase structures (lamellae, cylinders, spheres) in
microphase-separated block copolymer systems (on the order
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of 10 nm) or to the crystallites of semicrystalline polymers and
domains in immiscible polymer blends (both on the order of
μm), scales of several orders of magnitude are connected. A
similar multiplicity of time scales is involved in the description
of polymer dynamics. One of the fundamental aspects of
polymer dynamics is chain entanglement. Referring to the
situation in which macromolecules interpenetrate, the term
entanglement describes the interactions arising from the
uncrossability of chains.16,17 In polymer melts and rubbers,
these interactions determine dynamical, flow, and deformation
properties.3,17

With the foregoing discussion in mind, modeling the
structure−property relations of polymeric materials at the
atomic level involves the preparation of equilibrated melts of
long, entangled chains. Melts consisting of oligomers can be
equilibrated by sufficiently long molecular dynamics or Monte
Carlo simulations. By contrast, high molecular weight polymer
chains are very difficult to treat because they are difficult to
relax. In fact, for chains longer than the entanglement length,
the dynamics is dramatically slowed down.18 To understand the
level of computational effort required for polymer simulations,
the longest relaxation process of an entangled polymer melt of
length N scales at least as N3, which corresponds to at least N4

in CPU time, and the computer time required for reliable
equilibration is out of reach, especially for large systems.
Thus, coarse-graining methods for simulating polymer

behavior have been widely utilized to solve this problem.19−26

The general strategy involves a reduction of the number of
degrees of freedom by simplifying the models used and
retaining only those degrees of freedom that are relevant for a
particular range of interest. In practice, several atoms are
grouped together into “super-atoms”. The potentials between
superatoms are adjusted to reproduce mainly the structural
properties of a polymer. Following this approach, different
polymer properties have been calculated by mesoscale
simulations, yielding results that are in good agreement with
experimental data for polymer melts,21−24,27,28 blends,29 and
composites.30 In the same spirit, the multiscale coarse-graining
approach introduced by Izvekov and Voth31,32 uses a variational
procedure to build effective coarse-grained (CG) interactions
from atomistic reference simulations. The use of these or
similar approaches involving several specific coarse-grained
models is currently proposed for different synthetic polymer
architectures. For example, models have very recently been

reported for methacrylates,33 atactic polystyrene,34 polybuta-
diene melts,35 Pluronics in contact with biomembranes36 and in
water solutions,37 and coarse-grain solvent molecules for
biopolymers.38

In all of the aforementioned cases, the model setup is related
to the chemical structure of the repeating unit. Thus, it is
possible to reintroduce, after global relaxation of the system, the
chemical details of the chains. The combination of CG
simulation with an efficient back-mapping methodology (i.e.,
reintroduction of atomistic detail) is a strategy for circum-
venting the time scale problem and for obtaining well-
equilibrated atomistic structures. In fact, state-of-the-art atom-
istic modeling of high molecular weight polymer chains
involves a complicated procedure of atomistic simulations →
derivation of a coarse-grained model; coarse-grained simu-
lations → reverse-mapping and local relaxation of the atomistic
model (see Scheme 1, vertical approach).19,27,39−45 In this vein,
a hierarchical procedure using sequential back-mapping from
coarse-grained configurations was recently proposed by Kremer
and co-workers.46

On the other hand, a coarse-graining approach based on
particle continuum bridging has been proposed more recently.
In particular, molecular models can be developed in a hybrid
particle-field scheme combining particles with a field
representation employed for the calculation of nonbonded
interactions. The use of density fields in off-lattice MC
simulations has been originally introduced by Laradji et al.47

to study the equilibrium properties of polymer brushes.
Nowadays, due to their computational efficiency, hybrid models
are gaining popularity (for recent reviews, the reader can refer
to refs 48−50). The combination of particle and field
representations has been recently considered for single chains
in the mean-field method reported by Daoulas, Mueller, and co-
workers51,52 and applied to Monte Carlo (MC) simulations of
CG models of homopolymer and block copolymers.53,54

Several CG models using a hybrid representation of polymer
melts, polymer nanocomposites, biocompatible polymers,44

biomembranes,44,50,55−58 and vescicles59 have been reported. In
this framework, more recently, the molecular dynamics (MD)
technique has been combined with the self-consistent field
(SCF) method, a technique which we hereafter refer to as the
“MD-SCF” approach.60,61 The peculiar feature of the MD-SCF
approach is that the interactions among nonbonded particles
are evaluated through an external potential dependent on the

Scheme 1. (A) Vertical Approacha and (B) Horizontal Approachb

aThe coarse-graining procedure involves particle reduction and information transferred from the atomistic level to a CG model and back. The two
objects, atoms and beads, although connected by mapping and reverse-mapping procedures, do not coexist in the same model. bIn this approach,
unlike in the vertical approach, two scales of particles and fields coexist.
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local density. In this manner, the molecular motion in a many-
molecule system is reduced to the derivation of a partition
function of a single molecule in an external field. This
approximation enables us to effectively exploit the paralleliza-
tion of molecular dynamics simulations and to handle large-
scale systems.62

The two coarse-graining approaches, the first based on
particle reduction and the second based on a hybrid particle-
field representation, are conceptually different. This difference
is outlined graphically in Scheme 1. In particular, in the first
case, the coarse-graining approach can be defined as vertical, in
which information is mapped from an atomistic level (or from a
less coarse representation) to a coarser level, and, in the reverse
direction, the procedure usually depends on the particular
chemical structure that needs to be defined.22,39,42,43

In the second case, the coarse-graining approach can be
defined as horizontal, in which the particles and the field
representations coexist in the same model. This conceptual
difference leads to several practical and technical advantages of
the hybrid particle-continuum approach that can be exploited in
the generation of well-relaxed atomic structures of polymer
melts.
In the present paper, we propose a procedure based on MD-

SCF simulations that is able to generate well-relaxed all-atom
structures of polymer melts. In section 2.1, a brief introduction
to the simulation technique and hybrid particle-field models is
presented. In sections 2.2 and 2.3, the details of the simulation
and of the models are given. In section 2.4 the proposed
relaxation procedure is described. In the discussion section, the
procedure for obtaining well-relaxed structures is described in
detail. Applications of this procedure to two polymer models,
i.e., poly methyl-methacrylate (PMMA) and poly ethylene-
oxide (PEO) (see Scheme 2), are reported. In particular, the

structural and dynamic properties of the hybrid MD-SCF and
classical models based on pairwise interactions (named MD in
the following) are compared and discussed.
2.1. Method and Models. The all-atom models considered

in this work were developed in a hybrid MD-SCF scheme
combining particles with a field representation for nonbonded
interactions. According to self-consistent field (SCF) theory, a
particle is considered to interact with nonbonded particles only
through a mean field. The derivation of such a mean-field
representation is obtained by splitting the Hamiltonian of a
system composed of M molecules into two parts:

̂ Γ = ̂ Γ + ̂ ΓH H W( ) ( ) ( )0 (1)

In eq 1, Γ specifies a point in phase space and is used as a
shorthand for a set of positions of all atoms in the system
configuration. Moreover, in the following, the symbol ̂ (hat)
indicates that the associated physical quantity is a function of
the microscopic states corresponding to the phase space Γ. The
term Ĥ0(Γ) is the Hamiltonian of a reference system composed
of molecules interacting only through the intramolecular
bonding parameters (bond, angle, etc.) that are usually
considered in MD simulations. The deviation from the
reference system due to nonbonded interactions is denoted
as Ŵ(Γ).
Assuming a canonical (NVT) ensemble, the partition

function of the system is

∫ β=
!

Γ − ̂ Γ + ̂ ΓZ
M

d H W
1

exp{ [ ( ) ( )]}0 (2)

where β = 1/(kBT).
The number density of particles, in microscopic fashion, can

be defined as a sum of delta functions placed at the center of
mass of each particle as follows60
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where S(p) indicates the number of particles belonging to the
p-th molecule, and ri

(p) is the position of the i-th particle in the
p-th molecule.
The interaction term Ŵ(Γ) is calculated by introducing two

main assumptions. The first assumption is that this interaction
term depends on Γ but only through the particle number
density ϕ̂(r;Γ)

ϕ̂ Γ = ̂ ΓW W r( ) [ ( ; )] (4)

where the notation W[ϕ̂(r;Γ)] indicates that W is a functional
of ϕ̂(r;Γ).
Equation 2 can be rewritten as a partition function of single

molecules in an external field using an exact mathematical
transformation (namely, Hubbard-Stratonovich transforma-
tion63).
The total nonbonded interaction energy of the system in the

field approximation can be written as
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where ϕK(r) is the coarse-grained density of the species K at
position r, and χKK′ are mean-field parameters for the
interaction of a particle of type K with the density fields due
to particles of type K′. Here, ϕK(r) has been redefined as the
number density of the species K normalized by the total
average number density of the particles. More precisely, for
each species K, ϕK(r) is a scaled number density ϕK(r) =
ρK(r)/ρ0, where ρK(r) is the number density of the particles of
type K at the position r and ρ0 = N/V (N is the total number of
particles and V system volume). According to this definition the
scaled density will be 1 at r if ρK(r) = ρ0. This modified
definition of ϕK(r) only affects the scale of the conjugate field
V(r). The second term of the integrand on the right-hand side

Scheme 2. Chemical Structures of Repeating Units of (A)
PMMA and (B) PEO
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of eq 5 is called the relaxed incompressibility condition, where κ
is the compressibility that is assumed to be sufficiently small
(for the systems considered in this paper, the value of 1/κ is 10
kJ/mol).60 The second term of the integrand above is called
relaxed incompressibility condition. Differently from classical
MD nonbonded potentials, where excluded volume of atoms is
accounted by a fast increase of repulsive part of Lennard-Jones
potential, here excluded volume interactions are modeled
through the incompressibility condition. In particular, the
second term of the integrand above will be high (or low) if in
some point of the space the density will be higher (or lower)
than the average value. The introduction of the relaxed
incompressibility condition keeps the total density constant and
avoids accumulation of particles or voids. The value of κ fixes
how stiff is the incompressibility condition and the fluctuations
around the average value. In particular, for large values of kappa
the incompressibility will be loose, and, on the contrary, for
small values of kappa the condition will be stiff. Due to this
analogy, κ was named “compressibility”. The expression of the
external potential V(r) (see Supporting Information section
S2) is found by replacing the integrals over w(r) and φ(r) of eq
S14 with a Gaussian integral around the most probable state
(saddle point approximation). In this framework, the mean field
solution of eq S14, using saddle point approximation, is exactly
in the limit Ñ → ∞ and is

∑ ∑
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In the present study, which focuses on homopolymer melts,
terms depending on χKK′ are not considered; the only term
included is the incompressibility condition. This assumption
will be validated later. In this manner, the force acting on a
particle at position r imposed by the interaction with the
density field in the present case is

κ
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The sum over K in eq 7 is disregarded because we consider,
in the field representation, all atom types as belonging to the
same species.
From a computational point of view, the advantage of the

hybrid MD-SCF scheme is that the most expensive part of the
MD simulations, the calculation of the nonbonded forces, is
replaced by the evaluation of forces between single particles
with external potentials. For the calculation of these forces, it is
necessary to obtain a smooth coarse-grained density function
using the particle positions Γ. This procedure can be
represented as follows

ϕ ϕ̅ ̂ Γ =S r r{ ( ; )} ( ) (8)

where S ̅ denotes the mapping from particle positions to the
coarse-grained density ϕ(r). In the current implementation,
this density field is obtained by mapping particle positions on a
density mesh. In particular, the simulation box is divided into
several subcells. Then, according to the position of each particle
inside a cell, a fraction of the particle is assigned to each vertex
of the cell. To better visualize this procedure, a two-
dimensional case is schematized in Figure 1A.

As shown in Figure 1B, the fraction of a particle assigned to a
given lattice point is proportional to the area of the rectangles
shown in the figure (in the actual 3-dimensional system, these
are volumes of rectangular parallelepipeds). In particular, to
point 1 in Figure 1B, a fraction of a particle proportional to the
area (l-x × l-y) of the filled rectangle will be assigned.
The size of the cell l is an important spatial parameter

because it defines the extent to which the density is coarse-
grained. In fact, if the value of l is large, many particles will be
included in each cell, and the calculated density will become
coarser. When the coarse-grained density is calculated from
particle positions, the forces can be obtained from the spatial
derivatives of the density fields.
The iteration scheme used in the MD-SCF approach is as

follows: from the initial configuration of the system (at time t0),
a starting mesh representing the coarse-grained density is built,
and density gradients at the particle positions are calculated by
linear interpolation. Using the density gradients, the forces
acting on the particles at position r due to the interaction with
the density fields are computed according to eq 7. The total
force on the particles is the sum of the intramolecular forces
(bonds, angles, etc., calculated as in classical MD simulations)
and the forces due to the interactions of particles with density

Figure 1. (A) An explanation, using a two-dimensional system, of the
assignment of coarse-grained density to lattice points for a polymer
chain (for clarity, the only backbone non-hydrogen atoms are shown).
(B) Criterion for assignment of a particle fraction to lattice points. As
schematized in the figure, the squares indicate the lattice points where
the density is defined. Correspondingly, the density gradients, used for
force calculations, are defined at the center of each edge (staggered
lattice points indicated by crosses in part (B) of the square
surrounding the density lattice points.
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fields. It is important to stress that, for the proposed
implementation, the use of mean fields does not correspond
to a truly field-based method or simply particle−field
coexistence. The density field is a close function of particle
coordinates and is not an independent variable in the free
energy functional. Furthermore, using the instantaneous field
approximation introduced by Doulas et al. within the
framework of a single chain in mean-field Monte Carlo
simulations,51 it is possible to tune a time interval to update the
density field without loss of accuracy. The main assumption is
that the field, as a collective variable, is characterized by a slow
change with respect to particle displacements in one or more
time steps. The choice of an optimal value of the updating
frequency (Δtupdate) depends on the resolution of the density
(i.e., the size of the subcell in which the particles are grouped),
the system properties, and the conditions applied. For the
systems considered herein, it is observed that Δtupdate values less
than 1 ps yield sufficiently accurate results. According to this
result, for all simulations reported in the paper, if different
values are not explicitly mentioned, an update frequency of 0.1
ps has been used. This feature will be discussed in greater detail
in the discussion section.
2.2. Atomistic Models Details. The force field for the full-

atomistic PMMA model is obtained from refs 64 and 65, and
the force field parameters for the PEO model are taken from
refs 66 and 67. The functional forms and the bonding and
nonbonding interaction parameters are reported in the
Supporting Information (Section S1) for both the PMMA
and PEO models.
The intramolecular interactions (bond and angle terms) of

the hybrid models for PMMA and PEO employed in MD-SCF
simulations are coincident with those reported in refs 65, 67,
and 68, respectively.
2.3. Computational Details. Hybrid MD-SCF simulations

were run in the NVT ensemble, in which the temperature was
controlled using an Andersen thermostat69 (collision frequency
7 ps−1). Simulations were carried out at 500 K for PMMA and
343 K for PEO (see Table 1). A time step of 1 fs was employed

in all simulations. The density field was updated using Δtupdate =
0.1 ps, if not explicitely mentioned, in all MD-SCF simulations.
Reference MD simulations were carried out in the NVT
ensemble at the same temperatures employed for the MD-SCF
simulations. The temperature was held constant with a
Berendsen thermostat70 (τ = 0.5 ps). A time step of 1 fs as
used for both polymers. A cutoff distance of 1.0 nm was
employed for both van der Waals and Coulomb interactions.

The long-range corrections to electrostatic interactions were
calculated using a reaction field71 for PMMA, with a dielectric
constant72,73 ε = 2.6, and using the Ewald summation method74

for PEO.
2.4. Relaxation Procedure. The general strategy described

in detail and validated in the next section involves an increase in
the model resolution to equilibrate stepwise systems from
larger to smaller length scales and to recover an increasing
number of features from a large length scale to a smaller one
using reasonable starting configurations. The use of coarser
density fields in the first stages of the procedure allows for
faster simulations to be run in terms of both computer time and
the intrinsic dynamics of the systems (coarser density fields
lead to faster dynamics, as will be shown later in a more
quantitative and detailed manner). The procedure proposed
allows for the recovery, in a few ns, of equilibrium structures
going from a lower resolution of the density field to a higher
one. At the first level of approximation, a very coarse density
field (grid size l = Rg) is used to equilibrate the positions of the
centers of mass of the chains and to pack them in a reasonable
manner. Chain conformation and all other finer correlations are
then introduced by decreasing l. The advantage of the proposed
procedure based on the MD-SCF approach is that the change
in model resolution is straightforward and does not involve the
parametrization or rebuilding of the degrees of freedom as in
the case when using coarse-grained models based on beads
representing sets of atoms. This advantage allows us to solve a
critical characteristic of state-of-the-art coarse-graining and
reverse-mapping procedures. Indeed, these procedures are not
easy to generalize and reconstruction algorithms addressing
atomistic degrees of freedom depend on the specific chemistry
of each polymer. In the present case, all atoms are always
present, but correlations are included stepwise from Rg to
smaller scales below the monomer scales. The procedure
employed to obtain relaxed, all-atom structures is as follows:
1) Initial configurations are prepared by placing the center of

mass of each chain at a random position in the simulation box.
The box size is chosen according to the experimental density of
the polymer bulk at the considered temperature.
2) Four subsequent relaxations using the MD-SCF approach

by increasing the density field resolution (i.e., decreasing l) are
performed. First, relaxation with a value for l corresponding to
Rg (depending on the chain length) is used. The density field
resolution is increased to l = 0.8 nm (∼Rg 10-mer) and then
decreased to 0.4 (∼Rg 5-mer) and 0.2 nm (∼distance between
two successive repeating units).
3) The structures obtained at the finest resolution, l = 0.2

nm, do not present any overlaps atoms at short distances. A
very short relaxation (typically ∼100 ps for stiff polymers such
as PMMA and 10 ps for softer chains such as those of PEO)
using full particle resolution (full values of time steps and
particle−particle potentials) is performed with standard MD
simulation technique. Short relaxations of this type are
sufficient to fully recover intramolecular structure parameters
such as Rg (see next section) and the dihedral distributions (see
the Supporting Information) and to obtain intermolecular
correlations indistinguishable from those yielded by MD (see
the next section).
In the following, the choices of the parameters used in the

proposed procedures are described and validated in detail.

Table 1. Details of Simulated Systems

system
nr.

chains

nr.
units
(N)

total nr.
particles

nr. of
backbone
atoms

box
length
(nm)

PMMA-5a 60 5 4620 10 3.63
PMMA-10a 30 10 4560 20 3.68
PMMA-20a 15 20 4530 40 3.65
PMMA-180a 3 180 8106 360 4.45
PMMA-180Ba 100 180 270200 360 14.3
PMMA-400a 3 400 12004 800 4.95
PMMA-600a 3 600 27006 1200 6.50
PMMA-1200a 3 1600 96008 3800 10.5
PEO-30b 27 30 5886 90 3.77

aPMMA melts were simulated at 500 K. bPEO melt were simulated at
343 K.
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3. RESULTS AND DISCUSSION

In addition to the intrinsic difficulties associated with the
equilibration of large molecular weight polymer melts high-
lighted in the Introduction section, a further technical problem
of traditional MD simulations is related to the setup of a
suitable initial configuration (also for short chains). In
particular, at typical melt densities, there are large numbers of
overlaps between interacting atoms for any possible initial trial
configuration. During the very early stages of simulation, a
combination of energy minimizations and molecular dynamics
relaxations is always needed to remove the high-energy, short-
distance contacts. At this stage, in the presence of severe atom
overlaps, the integration algorithm of molecular dynamics
would terminate, and, typically, the procedures adopted involve
a moderation of the nonbonded forces and the simultaneous
use of very short time steps. For this reason, the procedures
typically employed are very involved. For example, polymer
chains can be placed into a simulation box at lower density, and

the repulsive-excluded volume interactions are introduced
smoothly by using soft-core potentials27 or scaling on the
prefactor of the repulsive part of the nonbonded potential.75

After this stage, when a reasonable starting guess is obtained,
constant-volume simulations are performed with full non-
bonded potentials until typical time steps (from 1 to 2 fs) can
be used, and then constant-pressure simulations are run to
slowly converge to the equilibrium density. In short, the
establishment of a good starting configuration is a very lengthy
and tedious procedure and usually involves several trials (not all
of them are successful) to obtain few initial structures.
The nature of the nonbonded interaction potential employed

in the hybrid MD-SCF simulations proposed here (see eq 6)
avoids this problem and does not involve any complicated
procedure. In particular, even in the presence of large overlaps
between particles and using large time steps, the smoothness of
the forces between particles and the density field makes the
MD-SCF integration very robust. To illustrate this feature, an

Figure 2. (A) Particle field potential vs time. (B) Equilibrium intermolecular monomer−monomer g(r) calculated from simulations with as initial
configuration strongly overlapped chains (red open circles) and chains randomly distributed in the simulation box (black curve). In both simulations,
the density field is described using l = 0.8 nm (∼Rg of PMMA chain with N = 10).

Figure 3. Density isosurfaces (describing regions in which the density is equal to ρ0 = Nparticles/Vbox) calculated from density fields generated from a
single chain of PMMA (chain length N = 180) in two different conformations (A and B) using grids of different resolution (l = 3.2 nm ∼ Rg chain, l
= 0.8 nm ∼ Rg 10-mer, l = 0.4 nm ∼ 5-mer, l = 0.2 nm < monomer size).
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MD simulation starting from an extremely overlapped
configuration is reported. In a box size corresponding to the
melt equilibrium density, to obtain a highly overlapped
configuration, the coordinates of 30 chains are generated,
replicating the coordinates of 2 chains (first snapshot in Figure
2A), i.e., in the first configuration all of the atoms of each of the
two sets of 15 chains (chain length N = 10) are perfectly
overlapped. In Figure 2A, the time behavior of the particle-field
potential and snapshots of an MD-SCF simulation of a melt of

30 chains (10-mers) using a 1 fs time step are reported. From
the figure, it is clear that polymer chains smoothly evolve
toward a homogeneous distribution in the space. In Figure 2A,
isosurfaces of the density field corresponding to the atomic
configurations (describing regions in which the density is
greater than ρ0 = Nparticles/Vbox) are also reported. The figure
clearly shows that in the first snapshot, large values of the
density field are localized in very confined regions, i.e.,
according to eq 6, the particle field potential has a large value
and particles sitting in these regions experience repulsive forces
(eq 7). Thus, the equilibrium state is reached when the density
field is homogeneous and the forces are related only to density
fluctuations. In the simulation described in Figure 2, in
approximately 1 ns, chains are homogeneously distributed in
the simulation box, and after 2.5 ns, the intermolecular
monomer−monomer g(r) is not distinguishable from the one
obtained by equilibrating the same system starting from a
configuration with randomly distributed polymer chains. In the
latter case, equilibration is much faster, and the equilibrium
monomer−monomer g(r) is obtained in ∼40 ps.
As reported in section 3, the density field is calculated on the

fly (with a given update frequency) from particle positions and
is defined on a tridimensional grid. The grid step l is an
important parameter defining the resolution of the density field.
The larger the value of l is, the greater the number of particles
that are included in a single cell and the coarser the description

Figure 4. Equilibrium Rg for PMMA (A) for different chain lengths as a function of grid size l. (B) For different values of the density field update
frequency Δtupdate. (C) Equilibrium Rg for PMMA for different chain lengths calculated (l = 0.2 nm and Δtupdate = 0.1 ps, empty circles) from
experiments (red curve, analytical eq fitted from θ solvent data76,77) using experimental SANS data78 (filled green circle) and the RIS calculations of
Flory79,80 (blue curve). (D) Time behavior of Rg for the PMMA-20 system obtained by simulations conducted at different values of grid size l using
the equilibrium configurations derived from the closest coarse grid as the starting point.

Figure 5. Experimental (X-ray)83 and the calculated scattering
intensities for polymers of two different chain lengths (PMMA-20
and PMMA-180) for systems relaxed according to the proposed
procedure and using long MD simulations (PMMA-20).
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of the density field with respect to the underlying particle
model becomes. To better explain this aspect, in Figure 3, the
density field, shown as an isosurface (describing regions in
which the density is equal to than ρ0 = Nparticles/Vbox) calculated

from two different configurations (different conformers) of an
all-atom model of a single chain of PMMA (chain length N =
180) at three different resolutions, is depicted. The figure
clearly shows that with a resolution of 0.8 nm (close to the
radius of gyration of 10 repeating units) the main shape of the
chain backbone is described and the isosurface is quite smooth
(see Figures 3A and 3B), whereas when using a finer resolution,
it is possible to describe the presence and the bulkiness of
substituents as well. As shown in Figure 3, in going from l = 0.4
(5-mer Rg) to l = 0.2 nm (∼ distance between two successive
repeating units), asperities due to the bulkiness of the backbone
substituents are also described by the shape of the density field.
In particular, the insets of Figure 3, which compare the details
of the isosurface corresponding to the density field calculated
for l = 0.2 nm and the atomic structure, make this feature
apparent.
Thus, the proposed procedure involves subsequent system

relaxations via MD-SCF simulations using different grid
resolutions.
Although MD-SCF simulations are conducted at the

equilibrium density, the structures obtained at the finest
resolutions (typically l = 0.4 and 0.2 nm) do not present any
atom superposition at short distances. Therefore, a short
relaxation using MD by full time steps and pair potentials can
be readily performed, yielding structures that are completely
indistinguishable from those obtained using long MD
simulations.
Gyration radii obtained from simulations using l = 0.2 nm for

PMMA melts at T = 500 K with different chain lengths, as a
function of molecular weight up to 1600 repeating units, are
compared with experimental data obtained from theta solutions
of PMMA,76,77 SANS data for polymer melts,78 and RIS
calculations reported by Flory79,80 in Figure 4C. The figure
clearly demonstrates good agreement between the MD-SCF
simulations and experimental measurements over the entire
range of molecular weights considered. For example, for N =
1600, the calculated Rg is 10.4 nm, and the experimental values
measured using the SAXS technique in the bulk by
Krishnamoorti et al.78 are 6 and 10.1 nm under the θ-
conditions reported by O’Really.77 It is worth noting that, as
will be shown in the following, we can also achieve an efficient
relaxation of atomistic models for molecular weights com-
parable with those employed for commercial use.81

Table 2. Simulation Times Required To Recover Different Structural Correlations

MD-SCF
l = Rg → 0.8 nma

(ns)a

MD-SCF
l = 0.8 → 0.4 nma

(ns)a

MD-SCF
l = 0.4 → 0.2 nma

(ns)a

system τRg (ns) M P D M P D M P D

MD-SCF
l = 0.2 → MDb

(ps)b

PMMA-5 0.08 2.0 2.3 11.0
PMMA-10 0.87 3.7 3.8 1.9 2.2 2.5 2.9 11.0
PMMA-20 1.55 3.4 4.1 4.0 1.7 2.4 2.6 2.1 2.9 2.9 11.0
PMMA-180 7.92 3.9 4.2 4.7 1.9 2.4 2.3 2.4 2.7 2.9 11.0
PMMA-400 41.3 4.1 4.1 4.6 2.3 2.7 2.8 2.9 3.1 2.8 11.0
PMMA-600 88.5 4.4 4.2 4.4 2.2 2.4 2.6 2.4 2.9 2.9 11.0

aTime to fully recover g(r), starting from equilibrated configurations with coarser density field description at M = monomer, P = pentamer, D =
decamer level. bTime required to fully recover atom−atom g(r) calculated by classical MD simulations from configurations equilibrated with MD-
SCF using the highest density field resolution (l = 0.2 nm). Radial distribution functions showing how the proposed procedure is able to recover
structural correlations are reported for the PMMA-180 system as an example in the Supporting Information (Figure S2). In the case of PMMA
further 70 ps are needed to recover dihedral distributions (see Figure S5 in the Supporting Information).

Table 3. Simulation times (ns) and Corresponding
Computational Cost (in Terms of CPU Hours) for
Relaxation of a System of 100 PMMA Chains (N = 180,
270200 Atoms)a

simulation length CPU hours

1st stage l = Rg 20 ns 12 h
2nd stage l = 0.8 nm 5 ns 3 h
3rd stage l = 0.4 nm 5 ns 3 h
4th stage l = 0.2 nm 5 ns 3 h
full MD short relaxation 100 ps ∼5 min
total ∼35.1 ns ∼21 h

aThe computational cost corresponds to that of a simulation using a
parallel version of OCCAM62 employing 96 processors Intel Xeon
E5620.

Figure 6. Snapshot of the PMMA-180 system composed of 100 chains
of PMMA with N = 180. Only a single full-atom chain is depicted
explicitly with carbon (blue), oxygen (red), and hydrogen (white)
atoms in the density field (green). The density field is visualized using
the density isosurfaces of the chain backbones.
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As presented for the single-chain properties in PMMA melts,
in Figure 4A, the behavior of Rg as a function of grid size for
other systems (PMMA-10, -20, and -180) is reported. For all
cases, a finer resolution of the grid corresponds to an increase
in Rg and values closer to those measured in experiments. This
behavior demonstrates how a finer grid resolution corresponds
to a better description of excluded volume interactions
(bulkiness of substituents, interactions between atoms along
the same chain such as 1−4, 1−5 and between different chains).
Similar behavior is observed for the update frequency (Figure
4B); specifically, for Δtupdate < 1 ps, where the value of Rg for
PMMA-180 converges to the MD value. Using large grids
corresponds to a coarser description of molecular shapes, softer
potentials and forces. Implementing a large grid means
collecting a large number of particles in a single cell when
the coarse-grained density field ϕ(r) is built. A coarser
description of short-range correlations along the chains leads
to a systematic underestimation of Rg, and the use of finer grids
leads to a systematic improvement of Rg. To clarify this
behavior and to validate the proposed procedure, in Figure 4D,
the time behavior of Rg for the PMMA-20 system is reported.
The aim of this figure is to show how long the relaxation of Rg
is in going from coarser density resolutions to finer ones and
from the finest density resolution (l = 0.2) nm to MD. This
plot clearly demonstrates that Rg increases by 10% in going
from l = 0.8 to 0.4 nm. The same trend occurs in going from l =
0.4 to 0.2 nm and, finally, in going from l = 0.2 to MD; the
increase is approximately 20%. Although a substantial deviation
is also observed for the smallest grid sizes, in all cases, due to
the softness of the potential and the fast relaxation of low
molecular weight models, the simulation length that is able to
recover the equilibrium value of Rg in going from one scale to
another is between 2 and 3 ns and always below 5 ns. Such an

underestimation of Rg would be a critical result if large
molecular weight melts would follow the same behavior. It is
interesting that the agreement for all grids is high in the case of
high molecular weight. For example, as reported in Figure 4A,
for the PMMA-180 system, going from l = Rg to 0.8 nm yields
an 8% increase in Rg, going from l = 0.8 to 0.4 nm yields a 3%
increase, and the deviation from l = 0.2 to full MD is only 1%.
In the Supporting Information (Figure S6), plots of the time
behavior of Rg analogous to the ones reported in Figure 4D is
shown for the PMMA-180 system. Plots of Figure S6 show that
these small deviations from the MD structures for high
molecular weights allow for the recovery of the correct
structures in short times (>1 ns). This behavior is not
surprising and can be rationalized considering the high accuracy
of mean-field approximations at large molecular weights. In
particular, in addition to the grid size and update frequency, the
invariant degree of polymerization Ñ is a relevant quantity for
the behavior of dense polymer melts. In a dense melt, for which
Rg = bN1/2 (where b is the Kuhn length and N is the number of
repeating units), this quantity is Ñ = (ρ0b

3)2N (where ρο is the
average number density of repeating units). The value of Ñ
allows for the quantification of the number of neighboring
molecules with which a reference chain interacts. In the limit Ñ
→ ∞, the fluctuations of the collective density are strongly
suppressed such that the approximations used in self-consistent
field theory become accurate.51,82 Comparison with exper-
imental data indicates that the approximations are safe for
values of Ñ > 104.51,82 In the present case, values of Ñ > 104

would correspond to N > 21 for PMMA (b = 1.53 nm). This
increase in accuracy with molecular weight has important
practical advantages. Indeed, for low molecular weights, for
which larger deviations are expected, relaxations are faster, and
the last stage of the procedure, involving full MD simulations, is

Figure 7. Comparison of intermolecular radial distribution functions between MD and MD-SCF simulations, at different grid sizes, calculated with
respect to the centers of mass of monomers, pentamers, and decamers, respectively, for PMMA-10 (A−C) and PMMA-20 (D−F). The results
obtained for the PMMA-5 system are reported in the Supporting Information (Figure S3).
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feasible. On the other hand, for large molecular weights, for
which relaxations are slower, the structures obtained at the
MD-SCF level are very similar to the equilibrium values of MD.
Similar features have been observed for radial distribution
functions (see discussion later).
Chain packing can be validated by comparing calculated and

experimental X-ray scattering data. In Figure 5, the
experimental and calculated scattering intensities for oligomers
and for melts with longer chains are reported. A useful
comparison to make is that between scattering data obtained
from oligomer melts using “brute force” MD relaxation. The
short chain length can ensure that a full relaxation can be
obtained using the standard MD approach. In fact, for this
system, for a simulation period of 20 ns, every chain is able to
move over an average of approximately 7 times its radius of
gyration, and the corresponding end-to-end relaxation time (3
ns estimated using autocorrelation functions) is shorter than
the simulation length. Figure 5 shows that the scattering
intensities obtained from full MD relaxation and from the
proposed procedure are practically coincident with those
obtained by experiment. As will be discussed in the section,
for longer chain lengths, the relaxation time grows rapidly to
large values that practically make “brute force” MD chain

relaxation impossible. The advantage of the proposed
procedure is the feasibility of system relaxation due to the
weak dependence of relaxation time on chain length, which is
associated with the very smooth nature of the particle field
interactions. In Figure 5, the X-ray scattering calculated from
simulations of the PMMA-180 system relaxed according to the
proposed procedure is reported. It is interesting to note that in
this case a better reproduction of the experimental scattering
intensity is obtained. Likely due to the higher molecular weight
considered, the region at low q is better reproduced. In
particular, in agreement with the experimental scattering
intensity, the second peak at approximately 19.3 nm−1 is
more apparent, whereas in both “brute force” relaxed and
particle-field oligomeric systems, only a shoulder close to the
most intense peak at 9.81 nm−1 is observed.
In Table 2, information related to the proposed procedure

for PMMA systems with different chain lengths is summarized.
In particular, τRg shows the simulation time required to move
every chain in the system by a distance at least equal to one Rg,
as can be calculated from the mean square displacement
(MSD) of the chain center of mass in simulations using coarse
density resolution (l = Rg, corresponding to the chain length).
The simulation times required to recover decamer−decamer

Figure 8. Comparison of intermolecular radial distribution functions between MD and MD-SCF for different atom pairs (different atom types are
defined in the top right corner of the figure).
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(indicated as D in Table 2), pentamer−pentamer (indicated as
P in Table 2), monomer−monomer (indicated as M in Table
2), and atom−atom (last column of Table 2) radial distribution
functions from the closest coarser level of density resolution are
also reported. As reported in Table 2, the largest differences are
in the simulation lengths of the first stage performed using the
coarsest density description ranging from hundreds of ps (for

low molecular weights) to ∼90 ns (for the highest molecular
weight). For more local relaxations, related to length scales
ranging from those of decamers to those of monomers, there is
no apparent dependence on molecular weight, and the
simulation time correlations are consistently on the order of
a few ns. In particular, as reported in Table 2, the simulation
times required to fully recover structural correlations at the

Figure 9. Comparison of intermolecular radial distribution functions, for different atom pairs, between MD (black line), MD-SCF (green squares),
and MD-SCF configurations after reintroduction of short-range interactions (blue circle = 1 ps, and filled red circle = 11 ps).

Figure 10. Mean square displacement of the center of mass of PMMA chains as a function of time. MD-SCF simulations were conducted using l =
Rg and Δtupdate = 0.1 ps.
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pentamer and monomer levels for MD-SCF simulations with l
= 0.8 nm starting from l = Rg for times ranging from 3 to 4 ns
(third column of Table 2) and for MD-SCF going from l = 0.8
to 0.4 and from 0.4 to 0.2 nm for times ranging from 1 to 3 ns
(fourth and fifth columns of Table 2). Finally, pair correlations
between atoms are fully recovered with very short MD
relaxations (11 ps, last column of Table 2). Pair correlations
are considered to be recovered if the deviation between the
equilibrium g(r) and the calculated values is less than 3%. A
quantitative definition of the deviation (eq S15) and a
tabulation of such values (Table S9) can be found in the
Supporting Information.
It is worth noting that after this procedure, the structures

relaxed at the experimental density of PMMA melts in the NVT
ensemble do not show any change in average density in NPT
simulations. As an example, the density behavior observed in a
NPT simulation of the PMMA-20 system at 500 K and 1 atm is
reported in the Supporting Information (Figure S4).
According to these results, a sample application of the

proposed procedure, together with the simulation times and

real time required for the computations, is described in Table 3
for a system composed of 100 chains of PMMA (chain length
N = 180, 270200 atoms). Figure 6 shows a model of such a
system in which all polymer chains are represented by the
density isosurfaces, and only a single chain is reported in all-
atoms configuration.
It is interesting to analyze, in greater depth, the behavior of

structural correlations by observing them at different scales
ranging from the decamer to the monomer and finally to the
atomic scale and how these levels of detail are captured by the
MD-SCF simulations for different values of l. For PMMA, we
can consider an Rg value corresponding to N = 10 (∼0.8 nm)
to be representative of the decamer length scale, an Rg value of
approximately 0.4 nm to be representative of the pentamer
length scale, and the average distance between two consecutive
repeating units (∼0.2 nm) to be representative of the monomer
length scale.
In Figure 7, the intermolecular g(r) values between effective

particles obtained by grouping atomic coordinates along the
chains as decamers, pentamers, and monomers are reported for
PMMA with N = 10 (Figures 7A−C) and N = 20 (Figures 7D−
F). It is interesting to observe that for l ≤ 0.4 nm, the MD-SCF
simulations yield correlations similar to those of the MD
simulations based on pair potentials. In particular, for a grid size
l = 0.8 nm, a partial superposition of monomers is obtained for
both systems, N = 10 and 20 (the g(r) at r = 0 has a small but
finite value in Figures 7A and 7B). For smaller grid sizes, the
typical correlation hole of the g(r) value of polymer melts is
well reproduced at the monomer level as well.
Figure 8 compares the intermolecular atomic pair correlation

functions obtained by MD and MD-SCF simulations. It is
interesting to observe that the correlations between atoms
along the backbone are already very well reproduced using a
grid resolution l = 0.4 nm (see Figure 8A). Similar behavior can
be observed for atoms close to the backbone (see Figures 8C,
8D, and 8G). Deviations from MD simulations are observed for
atoms far from the backbone and/or belonging to polar groups.
This behavior can be explained by considering that the
correlation between atoms in the backbone is not direct but
is mediated through interactions between substituents, whereas
the interactions between lateral groups depend more on
interactions between particle pairs. In other words, the
backbone correlations are “less pairwise” than the correlations
between lateral groups, and they can be properly described
using the density field. However, in the case of the substituents,
the short-range behavior, which in the MD simulations is
dictated by excluded volume interactions, is reasonably
reproduced for the highest grid resolution (l = 0.2 nm). The
peaks in g(r) of atoms belonging to polar groups, due to our
choice to disregard terms depending on the χKK′ parameters,
cannot be reproduced. As will be demonstrated in the
following, these correlations have a very local nature and can
be recovered using very short relaxations. In fact, Figure 9
shows pair correlation functions obtained from simulations
performed in the last stage of the proposed procedure. These
simulations use the configurations equilibrated using the MD-
SCF approach with l = 0.2 nm for MD relaxations lasting a few
ps. The figures clearly show that 11 ps is enough to recover the
full correlation for pairs with intense peaks in g(r).

Dynamic Properties. The largest time scale to consider in
the equilibration of a polymer melt is typically related to the
diffusion process of the center of mass of an entire chain. In
particular, a procedure can be considered effective if during the

Figure 11. (A) Diffusion coefficient of the centers of mass of chains as
a function of number of monomers N per chain. (B) Diffusion
coefficient of the centers of the mass of PMMA-180 chains as a
function of grid size l. (C) τRg as a function of N for MD-SCF and MD
simulations.
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equilibration of each chain it is possible to move its center of
mass by at least the length of its size (i.e., Rg). Based on this
metric, in Figure 10, a nondimensional quantity obtained from
the logarithm of the mean square displacement of the chain
center of mass (in units of Rg2) as a function of simulation time
is reported for several systems with different PMMA chain
lengths (as log−log plot). In the figure, times corresponding to
values greater than or equal to zero on the y axis indicate
simulation lengths sufficient for equilibration.
As expected, in going from short to longer chain lengths, the

time required for equilibration increases. In the case of the MD
simulation, a reliable equilibration is possible only for chain
lengths smaller than 100 units. Beyond this length, entangle-
ments between chains slow down the diffusion process. The
plots shown in Figure 10 corresponding to the MD results
(black lines) indicate that a few nanoseconds are enough to
equilibrate short oligomers (PMMA-10 and PMMA-20). For
the PMMA-20 system, 20 ns is already sufficient, and for the
longer PMMA-180 system, in 40 ns, displacement does not
take place.
It is interesting to examine the behavior of diffusion

coefficients as a function of the chain length for the MD-SCF
models. In particular, in Figure 11A, the diffusion coefficients of
the chain center of mass (D × N) is plotted as a function of the

chain length N for three different values of the density
resolution. The behaviors exhibited in the three cases are very
similar, and the curves are simply shifted according to the grid
size. In particular, diffusion is slow for small density grid sizes.
This behavior is reasonable because the potential becomes less
smooth when finer details of the polymer chains are described.
This effect has already been reported for MD-SCF coarse-
grained models of lipids.55,56 An important feature of these
results is the absence of any entanglement effect. In fact, for
large values of N as well, the diffusion follows a Rouse behavior
(D scales as N−1). In Figure 11C, the behavior of the chain
diffusion time τRg as a function of chain length is reported. As
previously described, for each system, as a function of chain size
(Rg), the first relaxation stages involve MD-SCF simulations for
l = Rg. Thus, although for large values of N the diffusion is
slower and larger displacements are needed to complete the
first stage of equilibration, two main compensating effects are
observed in the MD-SCF simulations. Both the intrinsic time
scale of the models and the simulation cost per time step are
small for systems with long chain lengths. In particular, Figure
11B reports the behavior of the diffusion coefficient as a
function of the grid size l. The diffusion of l = Rg is
approximately 10 times faster than that in the last stage of the
chain relaxation performed at l = 0.2 nm and in all cases much
faster than that in the MD simulations. These advantages, due
to the absence of entanglement effects, are more pronounced
for long chain lengths. With respect to the simulation costs, as
previously tested for several systems, the use of large grid sizes,
especially for large systems, leads to more efficient parallel
performances of the code in terms of both communication and
computational time.62

To understand the efficiency of the relaxation process,
another important time scale is the one related to the relaxation
of the end-to-end distance. In Figures 12A−E, autocorrelation
functions of the end-to-end vector are reported for systems

Figure 12. End-to-end autocorrelation functions for systems with increasing number of monomers N per chain from 10 to 1600 (A-E). (F) End-to-
end relaxation time τ as a function of N for MD and MD-SCF simulations.

Table 4. Fitting Parameters for Chain Diffusion (τ0, Second
Column) and End-to-End Relaxation (τ0 and Exponent,
Third Column)

grid size l (nm) τ0
a (ps) τ0

b (ps) exponentb

0.2 8.4 0.3 1.9
0.4 7.2 0.3 1.8
0.8 5.0 0.4 1.6

aFitted from diffusion data of Figure 8A. bFitted from end-to-end
relaxation times of Figure 9F.
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with different chain lengths. From the figure, it is clear that
MD-SCF simulations are characterized by a fast decrease in the
correlation functions and provide faster chain relaxations with
respect to MD simulations. As the chain length increases, the
difference between chain relaxation processes in MD and MD-
SCF simulations becomes greater. Furthermore, the effect of
the grid size l on the relaxation of the end-to-end vector is
similar to that obtained for diffusion (a large value of l
corresponds to a fast process) and is also, in this case, related to
the smoothness of the potentials for large values of l. In Figure
12F, the relaxation times of the end-to-end vector calculated by
an integration of a stretched exponential fitted from the
autocorrelation functions of Figure 12A−E, as described in eq
9, are shown.
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It is interesting to note that, independently of the grid size,
for MD-SCF simulations the relaxation times follow a power
low of the type τ ≈ τ0N

2. This feature is consistent with the
absence of entanglement effects obtained from diffusion
coefficients (Rouse behavior in Figure 11A). A quantitative

evaluation of both the exponent and prefactors was performed
for both the diffusion coefficients and end-to-end relaxation
times.
For the diffusion process, Figure 11A shows that the curve of

DN vs N is practically constant. From the value of DN obtained
according to the Rouse model, we can estimate the friction
coefficient for chain diffusion ζ

ζ=D N kT/R (10)

and using the value of the Kuhn length b of PMMA we can
obtain

τ ζ≈ b kT/0
2

(11)

From end-to-end correlation times, both τ0 and the exponent
can be fitted by a linear interpolation of the log−log plots
reported in Figure 12F. It is interesting to note that the data
corresponding to molecular weights of Ñ < 104 (i.e., N < 21, see
discussion about the accuracy of mean-field approximations
reported above) do not align with the data corresponding to
high molecular weights. In addition, in this case, for molecular
weights lower than 21, the effect of density fluctuations is not
properly described by mean-field approximations. For this
reason, these points have been excluded from the fitting.
Another interesting effect is that the smaller l is, the closer the
exponent fitted from end-to-end correlation times to the
theoretical predictions for the Rouse behavior becomes. In
Table 4, we report the τ0 values obtained using different grids
for both chain diffusion and end-to-end relaxation.
These results indicate that the relaxation process obtained

using the MD-SCF approach for high molecular weights has a
weaker dependence on chain length than that obtained using
MD simulations (where τ ≈ τ0N

3), and computational costs of
the proposed procedure are mainly related to the system size
rather than the chain length.

PEO Melts. In this section, we present the results obtained
for PEO melts by applying the same procedure described in
detail for PMMA. It should be stressed that the procedure is
parameter-free. Without considering the effect of the χKK′
parameters, the only parameter is the compressibility. This
parameter depends mainly on the scale of the models and their
density fluctuations and is safely transferable. In fact, the value
used in the present study is the same as the values used in
previous studies for coarse-grained models of lipids55−58 and
for mixtures of Pluronics and water.44

The behaviors obtained for PEO are similar to those
reported in the previous section (see Figures 13A−C).
Moreover, in this case, short relaxations with MD simulations
are sufficient to fully recover the fine structure of g(r) (see
Supporting Information section S3), and the total intermo-
lecular g(r) obtained using the proposed procedure is
coincident with the one reported by Smith66 and Maranas67

for PEO melts (see Supporting Information section S3).

■ CONCLUSIONS

A procedure based on MD-SCF simulations able to generate
well-relaxed all-atom structures of polymer melts has been
proposed. The application of this procedure to two different all-
atom polymer models, PMMA and PEO, was reported and
validated. In particular, all-atom structures with a structural
correlation indistinguishable from the correlations obtained by
long MD relaxations can be achieved.

Figure 13. (A) Average center of mass mean square displacement
(MSD) of PEO chain as a function of time. The nondimensional
quantity on the vertical axis is the mean square displacement of the
center of mass in units of Rg2. MD-SCF simulations were conducted
using l = Rg and Δtupdate = 0.1 ps. (B) End-to-end autocorrelation
function of PEO for MD and MD-SCF simulations. (C) Behavior of
radius of gyration of PEO as a function of the grid size l. The
experimental SANS value68 (filled red circle) and the value calculated
by MD simulations (filled blue triangle) are also reported on the plot.
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Due to the efficiency of parallel applications, the computa-
tional cost of the proposed approach is very low. This aspect,
together with the fast dynamics, due to the softness of MD-SCF
models, in practice leads to computational costs that are mainly
to the system size rather than to the chain length.
It is important to stress that, according to the proposed

procedure, no parametrization is needed to generate relaxed
structures of different polymers (no use of χ parameters for
homopolymer melts).
Moreover, due to the nature of the MD-SCF scheme, the

field is a byproduct of particle positions (i.e., all the particles are
always present in the model), unlike in current coarse-graining
strategies based on particle reductions, and there is no need for
special algorithms or back-mapping schemes to change the
resolution of the models. This feature makes the proposed
procedure general and its extension to other polymer
architectures straightforward.
Finally, a similar procedure can be easily extended to the

generation of all-atom structures of systems more complex than
homopolymer melts. In particular, similarly to several hybrid
MD-SCF models already reported in the literature,44,60,61 for
block copolymers and for polymer nanocomposites49,84 all-
atom structures can be obtained using few χ parameters by
modeling the repulsive interactions between incompatible
phases.
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